人工智能的发展改变了数据游戏

      虽然机器学习需要大量数据对自身行为进行修正,但随着人工智能功能复杂程度的提高,人工智能对数据的需求量也会迅速增加。从机器学习到深度学习(DL)更是向前迈出了一大步,而深度学习比机器学习需要的数据要多得多。原因在于深度学习通常只能识别神经网络各层之间的概念差异。当暴露在数百万个数据点之下时,深度学习可以确定概念的边界。深度学习让机器像人的大脑一样能够通过神经网络表示概念,从而能够解决更复杂的问题。人工智能还可以解决更为模糊的问题,这些问题的答案通常更加不确定或者是模棱两可的。这通常是判断或者识别类的问题,可以扩展到创作或者其他的右脑活动。这又导致对数据的更多需求,在某些情况下,从本质上而言,这些需求可能是迫切或者实时的。